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On vortex street wakes 

By P. W. BEARMAN 
Cambridge University Engineering Laboratory? 

(Received 15 June 1966) 

The flow in the wake of a two-dimensional blunt-trailing-edge body was investi- 
gated in the Reynolds number range, Reynolds number being referred to base 
height, 1.3 x lo4 to 4-1 x lo4. The effects of splitter plates and base bleed on the 
vortex street were examined. Measurements were made of the longitudinal 
spacing between vortices and the velocity of the vortices, and compared with 
values predicted by von KkmGn’s potential vortex street model. The lateral 
spacing was estimated by using both the von KBrm&n and Kronauer stability 
criteria. A new universal wake Strouhal number is devised, using the value of 
lateral spacing predicted by the Kronauer stability condition as the length dimen- 
sion. A correlation of bluff-body data was found when pressure drag coefficient 
times Strouhal number was plotted against base pressure. 

1. Introduction 
The aim of this paper is to compare measured vortex street parameters with 

those predicted by existing theories and to investigate the validity of the vortex 
street stability criteria of von Kkmhn and Kronauer. It is also intended to in- 
vestigate how vortex streets are affected by the introduction of either splitter 
plates or base bleed. 

Von KArmAn (see Milne-Thomson 1938) represented the vortex street wake 
which forms behind a bluff body by an idealized potential flow model consisting 
of a double row of staggered point vortices. The associated vortex street drag 
coefficient CDs can be shown to equal 

where QD, = DsltPaG, 

D, is the vortex street drag, U, free-stream velocity, Us is the velocity of vortices 
relative to the free stream, a the longitudinal spacing between vortices and b the 
lateral spacing between vortices. b/a is often referred to as the spacing ratio. 

It has also been shown by von K k m h  that vortex streets are stable to first- 
order disturbances if bla = 0.281. Substituting this value of the spacing ratio into 
(1) gives the von K k m h  vortex street drag formula 

CD,gy = 1*583(U,/U,) - O*63(U,/Uo)2. (2) 

t Now at  the National Physical Laboratory, Teddington, Middlesex. 
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CDs, can be determined from measurements of the longitudinal vortex spacing 
and the vortex shedding frequency f. Since af = U,, where U, is the velocity of 
the vortices relative to the model, and U, = U, + Us, 

where S ( =fh/U,) is the Strouhal number. Conversely, knowing f and vortex 
street drag, both a and U, can be predicted. 
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FIGURE 1. Vortex street drag coefficient versus spacing ratio for various values 

of vortex velocity. 

In  his review paper, Wille (1960) pointed out that any array of vortices is 
unstable to any order of disturbance higher than the first. The arrangement is 
particularly unstable to any three-dimensional disturbance. It would seem very 
unlikely, therefore, that vortex streets could possibly exist at high Reynolds 
numbers where the flow is fully or partly turbulent. The fact that vortex streets 
do exist casts suspicion on the von Khrmhn stability condition. Various authors, 
including Timme & Wille (1957) and Berger (1964), have measured values of b/a 
between 0.20 and 0.40 with bla increasing with distance along the wake. 

Hronauer (1964) has shown that spacing ratio is not an important parameter 
in determining CDs. Figure 1, after Kronauer, shows CDs, obtained from (l), 
against b/a for various values of &IU,. It can be seen that,for each value of UslU,, 
CDs is very insensitive to changes in b/a, the street drag coefficient passing through 
a broad minimum. Kronauer has proposed a new criterion for stability which 
states that for a given vortex velocity U ,  the vortex street adjusts itself into the 
configuration giving minimum CDs. The stability criterion can be written as 
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This stability criterion is based on no direct experimental evidence and one of 
the purposes of this investigation is to determine whether it predicts realistic 
values of the various vortex street parameters. 

Many authors have attempted to formulate a universal Strouhal number to 
compare the wakes of various bluff bodies. The most widely used universal wake 
Strouhal number is that due to Roshko (19543). Roshko found, however, that 
when a splitter plate was introduced into the wake of a circular cylinder the value 
of his universal Strouhal number depended on splitter plate position. The effect 
caused by the introduction of wake interference elements on the value of Roshko’s 
wake Strouhal number is investigated further. 

2. Measurement of the longitudinal spacing between vortices 
2.1. Experimental arrangement 

The blunt-trailing-edge models used (fully described in Bearman (1965, 1966)) 
had a base height h of 1 in. (2.54 em) and chord of 6 in. (15.25 cm). The Reynolds 
number R,, based on h, was in the range 1.3 x lo4 to 4.1 x lo4. The nose sections 
were elliptical and transition wires were attached a t  20 % chord. One model had 
provision for fitting splitter plates and the other had a porous base through which 
air could be bled into the wake. In  each case the shear layers leaving the body 
were parallel and by applying free-streamline theory it can be shown that the 
pressure drag coefficient, with base height as reference length, is equal to - (C,),, 
the base pressure coefficient. 

In  Bearman (1965) measurements were presented of X and base pressure co- 
efficient, (C,),, against splitter plate length t .  Similar quantities were given in 
Bearman (1966), this time as a function of bleed rate C,. C, = Qd/U,h, where Q 
is bleed velocity and d / h  is the proportion of the base that was porous. Further 
experiments are described here to obtain alh as a function of &/h and Cp. 

2.2. Experimental procedure and results 

The longitudinal spacing a between successive vortices of the same row was 
measured by using two hot wires. One wire, the reference wire, was fixed at  some 
position in the wake while the second wire, the movable wire, could be traversed 
along the x-axis of the wake. The two resulting signals, after suitable filtering, 
were displayed on an oscilloscope, one through the X-plates and the other through 
the Y-plates, and exhibited the familiar Lissajou figures. To obtain the steadiest 
figures it was found that both wires had to be in the same spanwise plane. The up- 
stream wire was positioned a little above the downstream one in order that there 
should be no interference from its wake. 

Typical plots of phase relationships along the wake are shown in figure 2 for the 
basic model (&/h = 0 or C, = O ) ,  for the model with a splitter plate of length 
1.125h and for the model with a bleed quantity C, = 0-0525. x is the distance of 
the movable wire from the model trailing edge. The slope of the curve at any 
position will give the reciprocal of the longitudinal spacing of the vortices a t  that 
position. This plot shows that a becomes constant within 3 or 4 base heights of 
the model trailing edge. As slope decreases, spacing increases; thus near the model 

40-2 
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the vortices were much more closely spaced. Very close to the base the signals 
were so weak that it was impossible to form steady Lissajou figures. As splitter 
plates were added, or bleed quantity increased, the distance downstream at which 
steady figures first appeared moved farther from the base. 
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FIGURE 2. Phase relations along the wake. x , Zjh = 0, R,  = 2.3 x lo4; 0, Z/h = 1.125, 
R,  = 2-3 x 104; @, C, = 0.0525, d j h  = 0.93, E ,  = 4.1 x lo4. 

The region in which a was found t o  be constant will be referred to as the stable 
region. Figure 3 shows a plot of the stable region vortex spacing alh versus splitter 
plate length for R, = 2.3 x 1 0 4  and 4.1 x 104 .  Prom the measurements there 
appeared to be no consistent relationship between the two Reynolds number 
cases, but this may have been due to inaccuracies in measuring ajh. The movable 
probe could be positioned to within & 041h but there was a small range of x over 
which the Lissajou figure was observed. This was probably caused by an un- 
steadiness in the basic vortex-shedding mechanism. The accuracy in measuring 
alh was limited to about 3 %, but could have been worse for the %Oh splitter plate, 
where the velocity fluctuations associated with shedding were comparatively 
weak. 

With knowledge of the shedding frequency and vortex spacing it was now 
possible to evaluate Q,,, the velocity with which vortices passed the hot-wire 
probe : 

U,lU, = Sajh. 
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1 -  

UJU, evaluated in the stable region is shown plotted in figure 3 against Plh for 
the two previous Reynolds number cases. The accuracy is expected to be no 
better than 3 %, since it depends on the accuracy of the measured values of S and 

R, = 4.1 x lo4 
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FIGURE 3. alh and uN/uo versus splitter plate length. -, potential flow model. 
alh: x ,  R ,  = 2 . 3 ~  lo4, 0, Rb = 4.1~ lo4; 

uN/uo: @, Rb = 2.3 X lo4, +, Rb = 4.1 X lo4. 
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0, R ,  = 4.1 x 104. 
FIGURE 4. a/h versus bleed rate, d / h  = 0.59. -, potential flow model; x , Rb = 2.3 X lo4; 

a/h. Por the basic model the vortices were travelling between 88 and 89 % of free- 
stream velocity. Since the shedding frequency was constant down the wake it is 
evident from figure 2 that in the initial part of the wake the vortices were 
accelerating. 
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Plots of alh in the stable region versus bleed rate, for the two slot widths (dlh)  
investigated, are shown in figures 4 and 5. The shape of these curves is very 
similar to the shape of the splitter plate curves in figure 3. 
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FIGURE 5. a/h versus bleed rate, d/h  = 0.93. -, potential flow model; x , R, = 2.3 x lo4; 
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FIG~RE 6. U,/U, versus bleed rate, d / h  = 0.59. --, potential flow model; x , R, = 2.3 x lo4; 

As described in Bearman (1966), over a range of C,, the hot-wire signals showed 
very regular fluctuations at  frequencies associated with vortex shedding. The 
resulting Lissajou figures were very steady and the values of a obtained are likely 
to be more accurate than those found in the splitter plate investigation. In  the 
region of C, approaching the value where regular shedding ceased the Lissajou 
figures became very unsteady and hence the accuracy of a deteriorated. 

Showii in figures 6 and 7 are pIots of UJU, against C,. It can be seen that there 
was a general trend towards higher values of U,./U, with increasing bleed rate. 
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For the larger slot width values of UJU,, greater than unity were recorded a t  high 
values of C,. This would appear to have no meaning and is probably due to the 
inaccuracy in measuring a, a t  high values of C,, mentioned above. 
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FIGURE 7. U,/U, versus bleed rate, dlh = 0.93. -, potential flow model; x , R,  = 2.3 x lo4; 

0, R,  = 4.1 x 104. 

3. Prediction of vortex street parameters 
3.1. Vortex velocity and longitudinal spacing 

I n  the introduction the well-known potential flow model of the wake was described 
and the expression (equation (1)) governing the drag associated with such a model 
was presented. Differentiating this equation and applying t.he Kronauer stability 
criterion (equation (4)) gives 

a a a  
2cosh- nb = (g-2)sinh: 

a 

The relationship between b/a and UsjUo is shown plotted in figure 8 for values of 
U,/Uo up to 0.24. The von Kkm&n stability condition, that bla = 0.281, is also 
plotted in figure 8 and corresponds to a value of Us/[& = 0.14, which is a fairly 
representative value for many bluff-body shapes. 

As Us/Uotends to zero, b/a also tends to  zero, which suggestsa flow configuration 
consisting of a line of equal, contra-rotating vortices advancing with zero velocity 
relative to the free stream. The circulation associated with an individual vortex 
and the drag of such an array can be shown, from ( l ) ,  to go to zero. The other 
extreme condition of (5) is when bla tends to infinity and then 

cosh (nbla) E sinh (nbla) and cosh (nbla) sinh (nbla) 
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becomes very much greater than 7rbla. Thus (5) becomes 

- t o  2 
Y -  

--v [L - 

us cosh (7rbla) sinh (nb/a) 

and therefore Us = +U,. This describes the flow in two shear layers where each 
shear layer is represented by a line of very closely spaced point vortices, such that 
the distance between the shear layers is very much greater than the longitudinal 
spacing between successive vortices. Between these two extremes lies the range 
of values of bla for which vortex streets are formed. 
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FIGURE 8. b/a versus Us/U, for the condition (20s is a minimum. 

For each value of Us/U, there is a corresponding value of b/a which makes CDs 
a minimum. The minimum vortex street drag coefficient, CDsM, is shown plotted 
in figure 1 against a limited range of values of bla. 

The vortex street drag force can be equated to a drag force experienced by the 
body. The problem arises, however, as to whether the vortex street drag should 
be equated to the body pressure drag or profile drag. With most bluff-body shapes 
skin friction represents a small contribution to total drag. With the basic blunt- 
trailing-edge section described here skin friction accounted for about 15 yo of the 
total drag. This percentage contribution rose to about 30 yo when a 2h splitter 
plate was added. The assumption made here is that vortex street drag, derived 
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from the idealized potential flow model of the wake, should be equated to body 
pressure drag. 

In  Bearman (1965, 1966) the effects of wind tunnel blockage on the model 
drag and base pressure were estimated using the Maskell (1965) correction. This 
method is only valid, however, up to the position in the wake at  which the shear 
layers become parallel, and no detailed information is known about the effects 
of blockage on the vortex street itself. The drag of the model is to be equated to 
the drag of the vortex street and thus to be consistent only measured values will 
be compared. 
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FIGURE 9. (uN/uo) CDSM versus U,lUo. 

The body pressure drag coefficient, Cosy can be related to the drag coefficient of 

(7) 
the vortex street by 

h~,,  = aC,s, 

where C,, = D,/+p UE h and D, is the body pressure drag force. Multiplying (7) 
by S gives 

If either the von K k m h  or the Kronauer stability criterion is used to evaluate 
CDS the product SC,, is only a function of the velocity of the vortices. Figure 9 
shows a plot of (UNjUo) C,,, against UN/Uo, where CDsM was obtained using the 
Kronauer stability criterion. Thus using this plot it is possible to predict U N / &  

from measured values of S and C,,. In  the following, unless otherwise stated, 
the Kronauer stability criterion will be used to determine UN/Uo. 

It has been shown that, as UN/Uo tends to 0.5, bla tends to infinity and therefore 
all possible values of UN/uo must be greater than 0.5. It can be seen from figure 9 
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that there are two possible solutions of UN/Uo for values of ( th/Uo) CDSM greater 
than 0.16. It is assumed that the greater of the two solutions always exists, which 
means that vortex velocities must be greater than about 0-70U0. Page & Johansen 
(1927) measured UN/Uo for a large variety of bluff-body shapes and the smallest 
value recorded was 0-77U0. The author knows of no measurements in a fully 
developed vortex street where UN/Uo was less than 0.70. 

Predicted values of V;,/Uo are shown compared with those measured in the base 
bleed experiments in figures 6 and 7 for d/h = 0.59 and 0.93 respectively. The 
theory appears to show the general trend of the results quite well and the agree- 
ment is particularly good up to a value of C,of about 0.05. If the theoretical value 
of UN/Uo is divided by the experimental value of S corresponding to that par- 
ticular C,, a value for a/h is found. These values are shown in figures 4 and 5 and 
the agreement between theory and experiment is again close. 

The splitter plate results are shown in figure 3 for the two Reynolds number 
cases. The agreement between the theoretical and experimental values was not so 
good; the curve of UN/C& has an opposite slope to the experimental results for 
long splitter plates. The reasons for this may lie in the inaccuracy of the experi- 
mental results for values of P/h greater than 1.75. The shedding frequency for 
these long splitter plates was not sharply defined and it may well have been more 
appropriate to represent S by a band of possible values, corresponding to a band 
of values for UN/Uo. The values of a/h  obtained with the splitter plates are again 
fairly well predicted by the potential flow model. 

The drag of the potential vortex street model, as shown by figure 9, is extremely 
sensitive to changes in Uv/Uo. The drag formula (1) is a function of U,/Uo and 
since UN/Uo is often near unity it is very difficult to measure U,/Uo very accurately. 
Taking the basic model as an example : if UN/Uo changes by 1 yo, Strouhal number 
remaining constant, C,, changes by 8 %. It is not possible, therefore, within the 
limits of experimental accuracy, to measure a/h a,nd S and hope to predict 
accurate values of CDF. It can be seen that the vortex street parameters need 
only change very slightly to accommodate large changes in drag. On the other 
hand, this means that, if drag and Strouhal number are known, accurate values of 
U V / C J ,  and a/h can be predicted. 

3.2. Lateral spacing and spacing ratio 
As shown by Kronauer (1964) the spacing ratio is not an important parameter in 
the determination of drag and hence the von K&rm&n drag formula (2) would 
have predicted the values of UN/Uo and a/h equally well. The foregoing work 
serves to show, however, that the vortex street model predicts realistic values in 
vortex streets with and without wake interference. Use of the Kronauer stability 
criterion allows additional predictions to be made of spacing ratio, and also b/h, 
which may be more representative of the actual flow than those found by using 
the von K&rm&n condition, b/a = 0.281. 

Figure 10 shows estimations of b/h and b/a for the splitter plate results at  
R, = 3.3 x lo4; suffix w denotes the von Kkm&n stability criterion has been used 
and suffix k the Kronauer criterion. Figure 11 shows the corresponding quantities 
derived from the base bleed results with d / h  = 0.93. It is interesting to note that, 
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for the bleed case, the Kronauer values of b/u were almost constant up to 
C, = 0.07. This corresponds to the C, a t  which X was a maximum and where there 
was a kink in the base pressure versus C, curve described in Bearman (1966). I n  
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all cases the von Kkm&n stability criterion predicted higher values of blh but the 
shapes of the curves were very similar. 

It is very difficult to determine b/h experimentally. Berger (1964)  states that 
no characteristic hot-wire signal can be expected from the centres of vortices and 
criticizes measurements of b/h that have been obtained by the ‘hot-wire tech- 
nique’. In  an attempt to estimate b/h the flow in the wake of the base bleed model 
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was visualized with smoke. At high Reynolds numbers it proved very difficult to 
locate the centres of vortices and the only conclusion was that bla appeared to be 
less than 0.281 but that it was impossible to assign an accurate value to it. This 
in itself, therefore, offers very little proof that (blh), is more representative than 
(blh),. It is proposed, by the introduction ofa  new universal Strouhal number, to 
substantiate that (blh), is more representative than (blh),. 

3.3. Wake Strouhal number 

It was demonstrated by Roshko (19543) that, by applying simple physical argu- 
ments to the mechanism of vortex shedding, a parameter could be derived to 
compare the wakes of different bluff bodies. He considered two shear layers a 
distance h' apart with the velocity outside the layers equal to ub, the velocity a t  
the edge of the boundary layer at the separation point. The frequency with which 
vortices were formed was considered proportional to UJh' and thus a wake 
Strouhal number S, could be formed where 

8, = fh'lu,. 

By applying Bernoulli's equation to the flow at the separation point, just outside 
the boundary layer, 

ub = uO[l - (cg)bl'* 

It is convenient to replace [l  - (C,)b]' by K and then 

SR = Sh'lh'h. 

h' was obtained by the notched hodograph method (Roshko 1954a) for three 
simple geometric shapes: circular cylinder, flat plate and 90" wedge. This gave a 
fairly constant S, of 0.163+0-01 over most of the Reynolds number range 
examined. 

The notched hodograph method gives the spacing of the shear layers when they 
become parallel and it is assumed that the vortices begin to form from shear layers 
with this spacing. With the model shape used to obtain the results described in 
this paper h' = h and thus S, = S/K. For the basic model this gave a value of 
S, = 0.19. With the introduction of wake interference it has been shown (see 
Bearman 1966) that the vortex formation position is moved farther from the 
body. Thus, although h'still equals h, it  is no longer representative of the distance 
between shear layers at the commencement of shedding. For example, at 
C, = 0.08 and dlh = 0.93, S, = 0.278 and thus SR appears unsuitable for com- 
paring the wakes of bluff bodies with wake interference. 

The typical length required will be called h" and is the distance between shear 
layers at  the commencement of vortex shedding. If the assumption is now made 
that the lateral displacement b between the vortex rows is equal to h", a new 
Strouhal number is obtained. The new Strouhal number SB becomes 

SB = f b / /7 ,  = Sb/Kh. 

S and K are measured values and blh can be found by using either the von Kk- 
m&n or the Kronauer stability criterion. S,, found by using the Kronauer stability 
condition, is plotted against K in figure 12 for the splitter plate and base bleed 
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results, and over the majority of the range a constant value of S, of about 0.181 
was obtained. At low values of K ,  corresponding to high C, and long splitter 
plates, there was a slight reduction in S,. This was not surprising because it can 
be shown that, when K = 1, S, will be zero. Taking as an example the basic 
model shape, it is seen that when K + 1 (i.e. (Cp)b+O) CDF-+O. Therefore the 
vortex street drag will tend to zero and U,lU,+ 1, which means that the spacing 
ratio will approach zero. Now since 

it is clear that S, will tend towards zero. This suggests that the length scale b is 
not universal and that a t  low values of K some other length may be more appro- 
priate. This point is returned to later. In  the experiments it was found that the 
wake stabilized and shedding ceased long before 8, = 0. 
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FIGURE 12. Universal Strouhal number Sg versus K for the base bleed and splitter plate 
results. x , bleed d/h  = 0.59; @ and 0, bleed d/h  = 0.93; +, splitter plates R, = 2.3 x 1 0 4 ;  
0 ,  splitter plates R, = 4.1 x lo4. 

If the von K k m h  stability criterion had been used to predict b/h a constant 
value of S, would not have been obtained. This is demonstrated in figure 12, 
where (SB)u decreases with increasing K .  Since S, involves parameters character- 
istic of the wake the existence of a constant value of 8, would appear to place 
some justification on the validity of the Kronauer stability criterion. As a more 
rigorous test the analysis has been extended to a variety of bluff-body shapes. 

For an arbitrary shape the information required to compute X, are the values 
of GDF, (C,), and S. Many investigators have examined circular cylinders over 
the Reynolds number range R, = 102 to lo5. The results used here are mainly 
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taken from Roshko (1954b) and Relf & Simmons (1924). Roshko (1961) has 
carried out experiments at  higher Reynolds numbers (R, = 2 x lo6 to lo7) where 
the boundary layers on the cylinder were turbulent. Flat plate and 90" wedge 
data have been obtained from Roshko (1954b). Further base bleed data were taken 
from Wood (1964) and Bellhouse & Wood (1965). Fage & Johansen (1927) have 
published results for an ogival and extended ogival shape and Nash, Quincey & 
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FIGURE 13. Universal Strouhal number SB versus K for various bluff-body shapes. x , 
splitter plates, Nash et al. (1963) Mach no. 0.4; 0, base bleed, Wood (1964) and Bellhouse 
& Wood (1965); 0 ,  ogival shape, Fage & Johansen (1927); +, extended ogival shape, 
Fage & Johansen (1927); v, 90' wedge, Roshko (19543); 0, flat plate, Roshko (19543); 
a, circular cylinder, R = lo2 to 10'; 0, circular cylinder, R = 2 x los t o  lo', Roshko 
(1961); -.-., mean of results from figure 12. 

Callinan (1963) have presented results for a bluff section fitted with splitter plates. 
The last two authors only present (CJ, and S but in each case the shear layers 
left the model parallel and free streamline theory has been applied to obtain C,,. 
The values of S, for these various bodies are plotted in figure 13 and again show 
a collapse of the data on to a value of S, = 0.181. 

A given value of CD,S, assuming a universal Strouhal number S,, implies a 
given value of K .  CD,X is shown plotted against K in  figure 14 for all the available 
data and shows a reasonable collapse of the results. The curve shown in figure 14 
was obtained by assuming the Kronauer stability criterion to hold and putting 
S, = 0.181. The scatter shown in figure 14 would have been greater if profile 
drag coefficient instead of C,, had been used. 

Goldberg & Florsheim (1966) have proposed a universal Strouhal number S, 
using the t;otal wake momentum thickness 15' as the relevant characteristic length. 
They define S, = fOlU and show that, for a two-dimensional body, 8/h = tC,, 
where C, is profile drag coefficient, and S,  = +SCD. For bluff bodies C, M C,, 
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and thus figure 14 represents a plot of 2So against K.  Clearly So is not universal 
but is related to base pressure. Gerrard (1966) also showed that So is not a 
universal Strouhal number. 

Although figure 14 shows a general collapse of the data it does not take account 
of the detailed variations of S, C,, and (C,), at low values of K.  As in figure 12 the 
bleed and splitter plate results show a trend away from the curve SB = 0.181 for 
values of K less than about 1-16. This value of base pressure corresponds to the 
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FIGURE 14. SCDF versus K for various bluff-body shapes. A, splitter plates, R, = 2.3 x 104; 
v, splitter plates, R, = 4-1 x 1 0 4 ;  a, base bleed d / h  = 0.59; e, base bleed d / h  = 0.93; 
other symbols as figure 13; -, assuming Sg = 0-181. 

value of C, and Plh at which S was a maximum. Wood’s results also show a trend 
away from the line S, = 0-181 for values of K less than 1.09. This value of K also 
corresponds to the C, at which S was a maximum. As K approaches 1, CDFS 
approaches zero and, in view of the fact that S, must go to zero as K goes to 1, 
noted earlier, the trend of the experimental data in figure 14 appears significant. 
Again this demonstrates that the idea of a constant SB breaks down as K + 1 and 
that some other length scale becomes important. Further research is required to 
determine if there is a change in the vortex formation process at these low values 
of K. 
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4. Summary of methods of predicting vortex street parameters 
It may prove useful to summarize the methods used to estimate the various 

vortex street parameters. The basic model adopted is the von K&rm&n potential 
flow model of the vortex street wake. This model is used in conjunction with the 
proposal by Kronauer (1964) that the vortex street spacing, for a given vortex 
velocity, adjusts itself into a configuration giving a minimum vortex street drag 
coefficient CDsM, where CDsM is based on longitudinal vortex spacing a. 

Given the measured values of Strouhal number and pressure drag coefficient it 
is possible to determine uN/uo from figure 9 since SCDF = (uN/uO)CDsM. The 
longitudinal vortex spacing is determined, knowing uN/uo, from the relation 
Xalh = uN/uo. Once uN/uo is known b/a can be determined through the unique 
relationship, shown in figure 8, between vortex velocity and spacing ratio. The 
value of the lateral spacing of the vortices follows. The only significant difference 
found using the Kronauer, in place of the von KBrm&n, stability criterion is in 
the estimation of the lateral spacing b and hence spacing ratio. 

The new universal Strouhal number, SB = fb/Ub, has been derived by following 
similar arguments to those put forward by Roshko (1954b). The characteristic 
length, however, is taken as the lateral displacement b between vortex rows in- 
stead of the shear layer spacing h’ obtained by the notched hodograph method. 
b is obtained as outlined above and Ub is simply related to base pressure. The rela- 
tionship between Strouhal number times pressure drag coefficient and the base 
pressure parameter K ,  shown in figure 14, was suggested from the definition of 
8,. By using this correlation of results the vortex-shedding frequency of a bluff 
body can be determined from its pressure distribution. 

5. Conclusions 
The von KkmBn vortex street drag formula was found to predict accurate 

values of the velocity of vortices and the longitudinal spacing between vortices, 
in wakes with splitter plates and base bleed. Both the von K k m h  and Kronauer 
stability criteria were used to estimate the lateral spacing b between vortices. It 
was not possible to compare directly these estimates of b with measured values. 

The value of Roshko’s universal wake Strouhal number was affected by the 
introduction of wake interference elements. Using the Kronauer stability condi- 
tion to determine b, a new universal wake Strouhal number was formed: 
8, = fb/Ub. When plotted against the base pressure parameter K ,  8, = 0-181 
over a wide range of K for a variety of bluff-body shapes. It is thought that this 
justifies, in part, the use of the Kronauer stability criterion. 

An analysis of results from different bluff-body shapes has shownthat a correla- 
tion exists between the product C,,S and the base pressure parameter K .  
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